Bayesian Regression Modeling with rstanarm
Jake Thompson
Psychometrician, ATLAS, University of Kansas
?loo-package
loo
for model comparisonslibrary(rstanarm) library(loo) stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq)
loo(stan_model)
Computed from 4000 by 434 log-likelihood matrix
Estimate SE
elpd_loo -1878.5 14.5
p_loo 2.9 0.3
looic 3757.1 29.0
------
Monte Carlo SE of elpd_loo is 0.0.
All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.
model_1pred <- stan_glm(kid_score ~ mom_iq, data = kidiq)
model_2pred <- stan_glm(kid_score ~ mom_iq * mom_hs, data = kidiq)
loo_1pred <- loo(model_1pred)
loo_2pred <- loo(model_2pred)
compare(loo_1pred, loo_2pred)
elpd_diff se
6.1 3.9
compare(loo_1pred, loo_2pred)
elpd_diff se
6.1 3.9
Bayesian Regression Modeling with rstanarm