Bayesian Regression Modeling with rstanarm
Jake Thompson
Psychometrician, ATLAS, University of Kansas
library(rstanarm)
stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq)
SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
Gradient evaluation took 0.000408 seconds
1000 transitions using 10 leapfrog steps per transition would take
4.08 seconds.
Adjust your expectations accordingly!
Iteration: 1 / 2000 [ 0%] (Warmup)
Iteration: 200 / 2000 [ 10%] (Warmup)
Iteration: 400 / 2000 [ 20%] (Warmup)
Iteration: 600 / 2000 [ 30%] (Warmup)
Iteration: 800 / 2000 [ 40%] (Warmup)
Iteration: 1000 / 2000 [ 50%] (Warmup)
Iteration: 1001 / 2000 [ 50%] (Sampling)
Iteration: 1200 / 2000 [ 60%] (Sampling)
Iteration: 1400 / 2000 [ 70%] (Sampling)
Iteration: 1600 / 2000 [ 80%] (Sampling)
Iteration: 1800 / 2000 [ 90%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)
Elapsed Time: 0.37735 seconds (Warm-up)
0.252244 seconds (Sampling)
0.629594 seconds (Total)
summary(stan_model)
Model Info:
function: stan_glm
family: gaussian [identity]
formula: kid_score ~ mom_iq
algorithm: sampling
priors: see help('prior_summary')
sample: 4000 (posterior sample size)
observations: 434
predictors: 2
Estimates:
mean sd 2.5% 25% 50% 75% 97.5%
(Intercept) 25.7 6.0 13.8 21.6 25.7 30.0 37.0
mom_iq 0.6 0.1 0.5 0.6 0.6 0.7 0.7
sigma 18.3 0.6 17.1 17.9 18.3 18.7 19.5
mean_PPD 86.8 1.2 84.3 85.9 86.8 87.6 89.2
log-posterior -1885.4 1.2 -1888.5 -1886.0 -1885.1 -1884.5 -1884.0
Diagnostics:
mcse Rhat n_eff
(Intercept) 0.1 1.0 4000
mom_iq 0.0 1.0 4000
sigma 0.0 1.0 3827
mean_PPD 0.0 1.0 4000
log-posterior 0.0 1.0 1896
For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor
on split chains (at convergence Rhat=1).
Estimates:
mean sd 2.5% 25% 50% 75% 97.5%
(Intercept) 25.7 6.0 13.8 21.6 25.7 30.0 37.0
mom_iq 0.6 0.1 0.5 0.6 0.6 0.7 0.7
sigma 18.3 0.6 17.1 17.9 18.3 18.7 19.5
mean_PPD 86.8 1.2 84.3 85.9 86.8 87.6 89.2
log-posterior -1885.4 1.2 -1888.5 -1886.0 -1885.1 -1884.5 -1884.0
Diagnostics:
mcse Rhat n_eff
(Intercept) 0.1 1.0 4000
mom_iq 0.0 1.0 4000
sigma 0.0 1.0 3827
mean_PPD 0.0 1.0 4000
log-posterior 0.0 1.0 1896
For each parameter, mcse is Monte Carlo standard error,
n_eff is a crude measure of effective sample size, and
Rhat is the potential scale reduction factor on split chains
(at convergence Rhat=1).
Bayesian Regression Modeling with rstanarm