Intermediate Functional Programming with purrr
Colin Fay
Data Scientist & R Hacker
library(broom)
library(dplyr)
lm(Sepal.Length ~ Species, data=iris) %>% tidy() %>% filter(p.value < 0.05)
lm(Pepal.Length ~ Species, data=iris) %>% tidy() %>% filter(p.value < 0.05)
lm(Sepal.Width ~ Species, data=iris) %>% tidy() %>% filter(p.value < 0.05)
lm(Sepal.Length ~ Species, data=iris) %>% tidy() %>% ilter(p.value < 0.05)
library(purrr) tidy_iris_lm <- compose( as_mapper(~ filter(.x, p.value < 0.05)), tidy, partial(lm, data=iris, na.action = na.fail) )
list( Petal.Length ~ Petal.Width, Petal.Width ~ Sepal.Width, Sepal.Width ~ Sepal.Length ) %>% map(tidy_iris_lm)
Clean code is:
Composing functions:
library(purrr)
rounded_mean <- compose(round, mean)
rounded_mean(1:2811)
1406
# FROM
round(mean(1:10))
round(mean(1:100))
round(mean(1:1000))
round(mean(1:10000))
#TO
round(median(1:10))
round(median(1:100))
round(median(1:1000))
round(median(1:10000))
-> 4 changes
# FROM
my_stats <- compose(round, mean)
my_stats(1:10)
my_stats(1:100)
my_stats(1:1000)
my_stats(1:10000)
#TO
my_stats <- compose(round, median)
my_stats(1:10)
my_stats(1:100)
my_stats(1:1000)
my_stats(1:10000)
-> 1 change
Intermediate Functional Programming with purrr