Intermediate Functional Programming with purrr
Colin Fay
Data Scientist & R Hacker at ThinkR
Limitless compositions:
library(broom)
library(purrr)
clean_aov <- compose(tidy, anova, lm)
clean_aov(Sepal.Length ~ Sepal.Width, data = iris)
# A tibble: 2 x 6
term df sumsq meansq statistic p.value
<chr> <int> <dbl> <dbl> <dbl> <dbl>
1 Sepal.Width 1 1.41 1.41 2.07 0.152
2 Residuals 148 101. 0.681 NA NA
Flip the logical:
is_not_na <- negate(is.na)
x <- c(1,2,3,4, NA)
is.na(x)
FALSE FALSE FALSE FALSE TRUE
is_not_na(x)
TRUE TRUE TRUE TRUE FALSE
negates()
& mappers:
under_hundred <- as_mapper(~ mean(.x) < 100)
not_under_hundred <- negate(under_hundred)
map_lgl(98:102, under_hundred)
TRUE TRUE FALSE FALSE FALSE
map_lgl(98:102, not_under_hundred)
FALSE FALSE TRUE TRUE TRUE
Is x %in%
y?
status <- 201
good_status <- c(200, 201, 202, 203)
status %in% good_status
TRUE
Intermediate Functional Programming with purrr