Mixture Models in R
Victor Medina
Researcher at The University of Edinburgh
Gaussian distribution
Bernoulli distribution (flipping a coin)
p <- 0.7
bernoulli <- sample(c(0, 1), 100, replace = TRUE, prob = c(1-p, p))
head(bernoulli)
1 1 1 0 0 1
p1 <- 0.7; p2 <- 0.5; p3 <- 0.4
bernoulli_1 <- sample(c(0, 1), 100, replace = TRUE, prob = c(1-p1, p1))
bernoulli_2 <- sample(c(0, 1), 100, replace = TRUE, prob = c(1-p2, p2))
bernoulli_3 <- sample(c(0, 1), 100, replace = TRUE, prob = c(1-p3, p3))
multi_bernoulli <- cbind(bernoulli_1, bernoulli_2, bernoulli_3)
head(multi_bernoulli, 4)
bernoulli_1 bernoulli_2 bernoulli_3
[1,] 1 0 0
[2,] 0 0 0
[3,] 0 0 1
[4,] 1 0 0
p_vector <- c(p1, p2, p3)
Handwritten digits dataset:
Mixture Models in R