Mixture Models in R
Victor Medina
Researcher at The University of Edinburgh
gender %>% head()
Gender Height Weight BMI
1 Male 73.84702 241.8936 0.04435662
2 Male 68.78190 162.3105 0.03430822
3 Male 74.11011 212.7409 0.03873433
4 Male 71.73098 220.0425 0.04276545
5 Male 69.88180 206.3498 0.04225479
6 Male 67.25302 152.2122 0.03365316
gender %>% select(-Gender) %>% head()
Height Weight BMI
1 73.84702 241.8936 0.04435662
2 68.78190 162.3105 0.03430822
3 74.11011 212.7409 0.03873433
4 71.73098 220.0425 0.04276545
5 69.88180 206.3498 0.04225479
6 67.25302 152.2122 0.03365316
head(gender %>% select(-Gender))
Height Weight BMI
1 73.84702 241.8936 0.04435662
2 68.78190 162.3105 0.03430822
3 74.11011 212.7409 0.03873433
4 71.73098 220.0425 0.04276545
5 69.88180 206.3498 0.04225479
6 67.25302 152.2122 0.03365316
head(gender %>% select(Weight))
Weight
1 241.8936
2 162.3105
3 212.7409
4 220.0425
5 206.3498
6 152.2122
gender %>%
ggplot(aes(x = Weight)) + geom_histogram(bins = 100)
Histogram
Gaussian distributions
Which parameters?
How to estimate them?
flexmix
Mixture Models in R