Hyperparameter Tuning in R
Dr. Shirin Elsinghorst
Senior Data Scientist
Grid Search
Random Search
→ Evaluation of best combination is done at the end.
Adaptive Resampling
"Futility Analysis in the Cross-Validation of Machine Learning Models." Max Kuhn; ARXIV 2014
trainControl
: method = "adaptive_cv"
+ search = "random"
+ adaptive =
min: minimum number of resamples per hyperparameter
alpha: confidence level for removing hyperparameters
method: "gls"
for linear model or "BT"
for Bradley-Terry
complete: if TRUE
generates full resampling set
fitControl <- trainControl(method = "adaptive_cv",
adaptive = list(min = 2, alpha = 0.05,
method = "gls", complete = TRUE),
search = "random")
tuneLength = x
fitControl <- trainControl(method = "adaptive_cv", number = 3, repeats = 3, adaptive = list(min = 2, alpha = 0.05, method = "gls", complete = TRUE), search = "random")
tic() set.seed(42) gbm_model_voters_adaptive <- train(turnout16_2016 ~ ., data = voters_train_data, method = "gbm", trControl = fitControl, verbose = FALSE, tuneLength = 7) toc()
1239.837 sec elapsed
gbm_model_voters_adaptive
...
Resampling results across tuning parameters:
shrinkage interaction.depth n.minobsinnode n.trees Accuracy Kappa Resamples
0.07137493 5 6 4152 0.9564654 0.02856571 9
0.08408739 5 14 674 0.9547185 0.02098853 4
0.28552325 8 15 3209 0.9568141 0.03024238 3
0.33663932 10 13 2595 0.9571130 0.04250979 9
0.54251480 3 24 3683 0.9482171 0.03568586 2
0.56406870 7 25 4685 0.9549898 0.05284333 5
0.58695763 8 24 1431 0.9520286 0.02742592 2
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were n.trees = 2595,
interaction.depth = 10, shrinkage = 0.3366393 and n.minobsinnode = 13.
Hyperparameter Tuning in R