Hyperparameter Tuning in R
Dr. Shirin Elsinghorst
Senior Data Scientist
AutoML compares
GBM Hyperparameters
histogram_type
ntrees
max_depth
min_rows
learn_rate
sample_rate
col_sample_rate
col_sample_rate_per_tree
min_split_improvement
Deep Learning Hyperparameters
epochs
adaptivate_rate
activation
rho
epsilon
input_dropout_ratio
hidden
hidden_dropout_ratios
# Using h2o.automl function
automl_model <- h2o.automl(x = x, y = y,
training_frame = train,
validation_frame = valid,
max_runtime_secs = 60,
sort_metric = "logloss",
seed = 42)
Slot "leader":
Model Details:
==============
H2OMultinomialModel: gbm
Model Summary:
number_of_trees number_of_internal_trees model_size_in_bytes min_depth
189 567 65728 1
max_depth mean_depth min_leaves max_leaves mean_leaves
5 2.96649 2 6 4.20988
lb <- automl_model@leaderboard
model_id mean_per_class_error
1 GBM_grid_0_AutoML_20181029_144443_model_6 0.01851852
2 GBM_grid_0_AutoML_20181029_144443_model_30 0.02777778
3 GBM_grid_0_AutoML_20181029_144443_model_18 0.02777778
4 GBM_grid_0_AutoML_20181029_144443_model_9 0.03703704
# List all models by model id
model_ids <- as.data.frame(lb)$model_id
[1] "GBM_grid_0_AutoML_20181029_144443_model_6"
[3] "GBM_grid_0_AutoML_20181029_144443_model_18"
[19] "XRT_0_AutoML_20181029_144443"
[20] "DRF_0_AutoML_20181029_144443"
[24] "DeepLearning_0_AutoML_20181029_144443"
[41] "StackedEnsemble_BestOfFamily_0_AutoML_20181029_144443"
[42] "StackedEnsemble_AllModels_0_AutoML_20181029_144443"
# Get the best model
aml_leader <- automl_model@leader
aml_leader
is again a regular H2O model object and can be treated as such!Hyperparameter Tuning in R