Grid and random search with mlr

Hyperparameter Tuning in R

Dr. Shirin Elsinghorst

Senior Data Scientist

Hyperparameter tuning with mlr

In mlr you have to define

  1. the search space for every hyperparameter
  2. the tuning method (e.g. grid or random search)
  3. the resampling method
Hyperparameter Tuning in R

Defining the search space

makeParamSet(
  makeNumericParam(),
  makeIntegerParam(),
  makeDiscreteParam(),
  makeLogicalParam(),
  makeDiscreteVectorParam()
)
                                       Type  len             Def
autoencoder                         logical    -           FALSE
use_all_factor_level                logical    -            TRUE 
activation                         discrete    -       Rectifier
hidden                        integervector <NA>         200,200 
epochs                              numeric    -              10
train_samples_per_iteration         numeric    -              -2 
seed                                integer    -               -
getParamSet("classif.h2o.deeplearning")
adaptive_rate                        logical    -            TRUE
rho                                  numeric    -            0.99
epsilon                              numeric    -           1e-08
rate                                 numeric    -           0.005
Hyperparameter Tuning in R
                                       Type  len             Def
autoencoder                         logical    -           FALSE
use_all_factor_level                logical    -            TRUE
activation                         discrete    -       Rectifier
hidden                        integervector <NA>         200,200
epochs                              numeric    -              10
train_samples_per_iteration         numeric    -              -2
seed                                integer    -               -
adaptive_rate                       logical    -            TRUE           
rho                                 numeric    -            0.99
epsilon                             numeric    -           1e-08
rate                                numeric    -           0.005
param_set <- makeParamSet(
  makeDiscreteParam("hidden", values = list(one = 10, two = c(10, 5, 10))),
  makeDiscreteParam("activation", values = c("Rectifier", "Tanh")),
  makeNumericParam("l1", lower = 0.0001, upper = 1),
  makeNumericParam("l2", lower = 0.0001, upper = 1))
Hyperparameter Tuning in R

Defining the tuning method

  • Grid search
ctrl_grid <- makeTuneControlGrid()
ctrl_grid
Tune control: TuneControlGrid
Same resampling instance: TRUE
Imputation value: <worst>
Start: <NULL>

Tune threshold: FALSE
Further arguments: resolution=10

Can only deal with discrete parameter sets!

  • Random search
ctrl_random <- makeTuneControlRandom()
ctrl_random
Tune control: TuneControlRandom
Same resampling instance: TRUE
Imputation value: <worst>
Start: <NULL>
Budget: 100
Tune threshold: FALSE
Further arguments: maxit=100
Hyperparameter Tuning in R

Define resampling strategy

cross_val <- makeResampleDesc("RepCV", 
                              predict = "both",
                              folds = 5 * 3)

param_set <- makeParamSet(...) ctrl_grid <- makeTuneControlGrid()
task <- makeClassifTask(data = knowledge_train_data, target = "UNS") lrn <- makeLearner("classif.h2o.deeplearning", predict.type = "prob", fix.factors.prediction = TRUE)
lrn_tune <- tuneParams(lrn, task, resampling = cross_val, control = ctrl_grid, par.set = param_set)
Hyperparameter Tuning in R

Tuning hyperparameters

lrn_tune <- tuneParams(lrn, task, resampling = cross_val, control = ctrl_grid, par.set = param_set)
[Tune-y] 27: mmce.test.mean=0.6200000; time: 0.0 min
[Tune-x] 28: hidden=two; activation=Rectifier; l1=0.578; l2=1
[Tune-y] 28: mmce.test.mean=0.6800000; time: 0.0 min
[Tune-x] 29: hidden=one; activation=Rectifier; l1=0.156; l2=0.68
[Tune-y] 29: mmce.test.mean=0.4400000; time: 0.0 min
[Tune-x] 30: hidden=one; activation=Rectifier; l1=0.717; l2=0.427
[Tune-y] 30: mmce.test.mean=0.6600000; time: 0.0 min

[Tune] Result: hidden=two; activation=Tanh; l1=0.113; 
l2=0.0973 : mmce.test.mean=0.2000000

# tictoc
26.13 sec elapsed
Hyperparameter Tuning in R

Let's practice!

Hyperparameter Tuning in R

Preparing Video For Download...