Analyzing Police Activity with pandas
Kevin Markham
Founder, Data School
apple
price volume date_and_time
0 174.35 20567800 2018-01-08 16:00:00
1 174.33 21584000 2018-01-09 16:00:00
2 155.15 54390500 2018-02-08 16:00:00
3 156.41 70672600 2018-02-09 16:00:00
4 176.94 23774100 2018-03-08 16:00:00
5 179.98 32185200 2018-03-09 16:00:00
apple.dtypes
price float64
volume int64
date_and_time datetime64[ns]
apple.date_and_time.dt.month
0 1
1 1
2 2
3 2
...
apple.set_index('date_and_time', inplace=True)
apple.index
DatetimeIndex(['2018-01-08 16:00:00', '2018-01-09 16:00:00',
'2018-02-08 16:00:00', '2018-02-09 16:00:00',
'2018-03-08 16:00:00', '2018-03-09 16:00:00'],
dtype='datetime64[ns]', name='date_and_time', freq=None)
apple.index.month
Int64Index([1, 1, 2, 2, 3, 3], dtype='int64', name='date_and_time')
dt
accessor is not used with a DatetimeIndexapple.price.mean()
169.52666666666667
apple.groupby(apple.index.month).price.mean()
date_and_time
1 174.34
2 155.78
3 178.46
Name: price, dtype: float64
monthly_price = apple.groupby(apple.index.month).price.mean()
import matplotlib.pyplot as plt
monthly_price.plot()
plt.xlabel('Month')
plt.ylabel('Price')
plt.title('Monthly mean stock price for Apple')
plt.show()
Analyzing Police Activity with pandas