Analyzing Police Activity with pandas
Kevin Markham
Founder, Data School
pd.crosstab(ri.driver_race,
ri.driver_gender)
driver_gender F M
driver_race
Asian 551 1838
Black 2681 9604
Hispanic 1953 7774
Other 53 212
White 18536 43334
ri[(ri.driver_race == 'Asian') &
(ri.driver_gender == 'F')
].shape
(551, 14)
driver_race
is along the index, driver_gender
is along the columnstable = pd.crosstab(
ri.driver_race,
ri.driver_gender)
.loc[]
accessor: Select from a DataFrame by labeltable
driver_gender F M
driver_race
Asian 551 1838
Black 2681 9604
Hispanic 1953 7774
Other 53 212
White 18536 43334
table.loc['Asian':'Hispanic']
driver_gender F M
driver_race
Asian 551 1838
Black 2681 9604
Hispanic 1953 7774
table =
table.loc['Asian':'Hispanic']
table.plot()
plt.show()
table.plot(kind='bar')
plt.show()
table.plot(kind='bar', stacked=True)
plt.show()
Analyzing Police Activity with pandas