Analyzing Police Activity with pandas
Kevin Markham
Founder, Data School
weather = pd.read_csv('weather.csv')
weather.head(3)
STATION DATE TAVG TMIN TMAX AWND WSF2 WT01 WT02
0 USW00014765 2005-01-01 44.0 35 53 8.95 25.1 1.0 NaN
1 USW00014765 2005-01-02 36.0 28 44 9.40 14.1 NaN NaN
2 USW00014765 2005-01-03 49.0 44 53 6.93 17.0 1.0 NaN
... WT11 WT13 WT14 WT15 WT16 WT17 WT18 WT19 WT21 WT22
0 ... NaN 1.0 NaN NaN NaN NaN NaN NaN NaN NaN
1 ... NaN NaN NaN NaN 1.0 NaN 1.0 NaN NaN NaN
2 ... NaN 1.0 NaN NaN 1.0 NaN NaN NaN NaN NaN
TAVG
, TMIN
, TMAX
: TemperatureAWND
, WSF2
: Wind speedWT01
... WT22
: Bad weather conditionsweather[['AWND', 'WSF2']].head()
AWND WSF2
0 8.95 25.1
1 9.40 14.1
2 6.93 17.0
3 6.93 16.1
4 7.83 17.0
weather[['AWND', 'WSF2']].describe()
AWND WSF2
count 4017.000000 4017.000000
mean 8.593707 19.274782
std 3.364601 5.623866
min 0.220000 4.900000
25% 6.260000 15.000000
50% 8.050000 17.900000
75% 10.290000 21.900000
max 26.840000 48.100000
weather[['AWND', 'WSF2']].plot(kind='box')
plt.show()
weather['WDIFF'] = weather.WSF2 - weather.AWND
weather.WDIFF.plot(kind='hist') plt.show()
weather.WDIFF.plot(kind='hist', bins=20)
plt.show()
Analyzing Police Activity with pandas