Analyzing Police Activity with pandas
Kevin Markham
Founder, Data School
apple.groupby(apple.index.month).price.mean()
date_and_time
1 174.34
2 155.78
3 178.46
apple.price.resample('M').mean()
date_and_time
2018-01-31 174.34
2018-02-28 155.78
2018-03-31 178.46
apple
date_and_time price volume
2018-01-08 16:00:00 174.35 20567800
2018-01-09 16:00:00 174.33 21584000
2018-02-08 16:00:00 155.15 54390500
... ... ...
apple.volume.resample('M').mean()
date_and_time
2018-01-31 21075900
2018-02-28 62531550
2018-03-31 27979650
Freq: M, Name: volume, Length: 3, dtype: float64
monthly_price = apple.price.resample('M').mean()
monthly_volume = apple.volume.resample('M').mean()
pd.concat([monthly_price, monthly_volume], axis='columns')
date_and_time price volume
2018-01-31 174.34 21075900
2018-02-28 155.78 62531550
2018-03-31 178.46 27979650
monthly = pd.concat([monthly_price, monthly_volume],
axis='columns')
monthly.plot()
plt.show()
monthly.plot(subplots=True)
plt.show()
Analyzing Police Activity with pandas