Analyzing Police Activity with pandas
Kevin Markham
Founder, Data School
ri.head(3)
stop_date stop_time driver_gender driver_race
0 2005-01-04 12:55 M White
1 2005-01-23 23:15 M White
2 2005-02-17 04:15 M White
ri.dtypes
stop_date object
stop_time object
driver_gender object
driver_race object
...
stop_date
and stop_time
into one columndatetime
formatapple
date time price
0 2/13/18 16:00 164.34
1 2/14/18 16:00 167.37
2 2/15/18 16:00 172.99
apple.date.str.replace('/', '-')
0 2-13-18
1 2-14-18
2 2-15-18
Name: date, dtype: object
combined =
apple.date.str.cat(apple.time, sep=' ')
combined
0 2/13/18 16:00
1 2/14/18 16:00
2 2/15/18 16:00
Name: date, dtype: object
apple['date_and_time'] = pd.to_datetime(combined)
apple
date time price date_and_time
0 2/13/18 16:00 164.34 2018-02-13 16:00:00
1 2/14/18 16:00 167.37 2018-02-14 16:00:00
2 2/15/18 16:00 172.99 2018-02-15 16:00:00
apple.dtypes
date object
time object
price float64
date_and_time datetime64[ns]
apple.set_index('date_and_time', inplace=True)
apple
date time price
date_and_time
2018-02-13 16:00:00 2/13/18 16:00 164.34
2018-02-14 16:00:00 2/14/18 16:00 167.37
2018-02-15 16:00:00 2/15/18 16:00 172.99
apple.index
DatetimeIndex(['2018-02-13 16:00:00', '2018-02-14 16:00:00',
'2018-02-15 16:00:00'],
dtype='datetime64[ns]', name='date_and_time', freq=None)
Analyzing Police Activity with pandas