Intermediate Data Visualization with Seaborn
Chris Moffitt
Instructor
sns.regplot(data=df, x='temp',
y='total_rentals', marker='+')

residplot function sns.residplot(data=df, x='temp', y='total_rentals')

order parameter sns.regplot(data=df, x='temp',
y='total_rentals', order=2)

sns.residplot(data=df, x='temp',
y='total_rentals', order=2)

sns.regplot(data=df, x='mnth', y='total_rentals',
x_jitter=.1, order=2)

x_estimator can be useful for highlighting trends sns.regplot(data=df, x='mnth', y='total_rentals',
x_estimator=np.mean, order=2)

x_bins can be used to divide the data into discrete binssns.regplot(data=df,x='temp',y='total_rentals',
x_bins=4)

Intermediate Data Visualization with Seaborn