Intermediate Data Visualization with Seaborn
Chris Moffitt
Instructor
matplotlib
Axes
objectsAxes
can be passed to seaborn functionsfig, ax = plt.subplots()
sns.histplot(df['Tuition'], ax=ax)
ax.set(xlabel='Tuition 2013-14')
axes
object supports many common customizationsfig, ax = plt.subplots()
sns.histplot(df['Tuition'], ax=ax)
ax.set(xlabel="Tuition 2013-14",
ylabel="Distribution", xlim=(0, 50000),
title="2013-14 Tuition and Fees Distribution")
fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2,
sharey=True, figsize=(7,4))
sns.histplot(df['Tuition'], stat='density', ax=ax0)
sns.histplot(df.query('State == "MN"')['Tuition'], stat='density', ax=ax1)
ax1.set(xlabel='Tuition (MN)', xlim=(0, 70000))
ax1.axvline(x=20000, label='My Budget', linestyle='--')
ax1.legend()
Intermediate Data Visualization with Seaborn