Introduction to Anomaly Detection in R
Alastair Rushworth
Data Scientist
furniture_tree <- iForest(data = furniture, nt = 1, phi = 100)
furniture_forest <- iForest(data = furniture, nt = 100)
Forest versus single tree
head(furniture_scores)
trees_10 trees_50 trees_100 trees_200 trees_500 trees_1000
1 0.5699958 0.5888690 0.5966556 0.5911285 0.6006028 0.6022553
2 0.5930155 0.6094254 0.6102873 0.6067693 0.6103950 0.6138331
3 0.5491612 0.5530659 0.5509151 0.5478388 0.5543705 0.5541810
4 0.5919385 0.5934920 0.6036891 0.5986545 0.6042257 0.6038739
5 0.5755555 0.5545840 0.5562077 0.5502717 0.5529810 0.5533804
6 0.6099932 0.6156158 0.6246391 0.6237609 0.6262847 0.6293865
plot(trees_500 ~ trees_1000, data = furniture_scores)
abline(a = 0, b = 1)
Introduction to Anomaly Detection in R