Exploring conditional missings with ggplot

Dealing With Missing Data in R

Nicholas Tierney

Statistician

What we are going to cover

  • How to use nabular data to explore how values change according to other values going missing
  • Explore visualizations:
    • densities
    • box plots
    • different methods of splitting the visualization
Dealing With Missing Data in R

Visualizing missings using densities

ggplot(airquality,
       aes(x = Temp)) + 
  geom_density()

Dealing With Missing Data in R

Visualizing missings using densities

airquality %>%
  bind_shadow() %>%
  ggplot(aes(x = Temp,
             color = Ozone_NA)) + 
  geom_density()

Dealing With Missing Data in R

Visualizing missings using box plots

airquality %>%
  bind_shadow() %>%
  ggplot(aes(x = Ozone_NA,
             y = Temp)) + 
  geom_boxplot()

Dealing With Missing Data in R

Visualizing missings using facets

airquality %>%
  bind_shadow() %>%
  ggplot(aes(x = Temp)) + 
  geom_density() + 
  facet_wrap(~Ozone_NA)

Dealing With Missing Data in R

Visualizing missings using facets

airquality %>%
  bind_shadow() %>%
  ggplot(aes(x = Temp,
             y = Wind)) + 
  geom_point() +
  facet_wrap(~ Ozone_NA)

Dealing With Missing Data in R

Visualizing missings using color

airquality %>%
  bind_shadow() %>%
  ggplot(aes(x = Temp,
             y = Wind,
             color = Ozone_NA)) + 
  geom_point()

Dealing With Missing Data in R

Adding layers of missingness

airquality %>%
  bind_shadow() %>%
  ggplot(aes(x = Temp,
             color = Ozone_NA)) + 
  geom_density()  +
  facet_wrap(~ Solar.R_NA)

Dealing With Missing Data in R

Let's practice!

Dealing With Missing Data in R

Preparing Video For Download...