Visualizing Geospatial Data in Python
Mary van Valkenburg
Data Science Program Manager, Nashville Software School
{ "type": "FeatureCollection",
"features": [
{ "type":"Feature",
"properties":{
"name":"Historic Buena Vista"
},"geometry":{
"type":"MultiPolygon","coordinates":[[[[-86.79511056795417,36.17575....
neighborhoods = gpd.read_file('./data/neighborhood_boundaries.geojson')
neighborhoods.head(1)
name geometry
Historic Buena Vista (POLYGON ((-86.79511056795417 36.17575964963348...)))
raster image of Corfu
vector image of Corfu
school_districts.head(3)
first_name last_name position district geometry
Sharon Gentry Member 1 (POLYGON ((-86.771 36.383)...))
Jill Speering Vice-Chair 3 (POLYGON ((-86.753 36.404)...))
Jo Ann Brannon Member 2 (POLYGON ((-86.766 36.083)...))
council_dists.plot(
column='district',
cmap='Set3',
legend=True)
plt.title('Council Districts')
plt.show();
leg_kwds={'title':'District Number',
'loc': 'upper left',
'bbox_to_anchor':(1, 1.03),
'ncol':3}
council_dists.plot(column='district',
cmap='Set3',
legend=True,
legend_kwds=leg_kwds)
plt.title('Council Districts')
plt.show();
Visualizing Geospatial Data in Python