Biomedical Image Analysis in Python
Stephen Bailey
Instructor
plt.subplots
: creates a figure canvas with multiple AxesSubplots
objects.
import imageio vol = imageio.volread('chest-data') fig, axes = plt.subplots(nrows=1, ncols=3)
axes[0].imshow(vol[0],cmap='gray')
axes[1].imshow(vol[10],cmap='gray') axes[2].imshow(vol[20],cmap='gray')
for ax in axes: ax.axis('off')
plt.show()
import imageio vol = imageio.volread( 'chest-data')
view_1v2 = vol[pln, :, :] view_1v2 = vol[pln]
$$Axial$$
import imageio vol = imageio.volread( 'chest-data')
view_1v2 = vol[pln, :, :] view_1v2 = vol[pln]
view_0v2 = vol[:, row, :]
$$Coronal$$
import imageio vol = imageio.volread( 'chest-data')
view_1v2 = vol[pln, :, :] view_1v2 = vol[pln]
view_0v2 = vol[:, row, :]
view_0v1 = vol[:, :, col]
$$Sagittal$$
Pixels may adopt any aspect ratio:
im = vol[:,:,100]
d0, d1, d2 = vol.meta['sampling']
d0, d1, d2
(2, 0.5, 0.5)
asp = d0 / d1
asp
3
plt.imshow(im, cmap='gray',
aspect=asp)
plt.show()
Biomedical Image Analysis in Python