Biomedical Image Analysis in Python
Stephen Bailey
Instructor


plt.subplots: creates a figure canvas with multiple AxesSubplots objects.

import imageio vol = imageio.volread('chest-data') fig, axes = plt.subplots(nrows=1, ncols=3)axes[0].imshow(vol[0],cmap='gray')axes[1].imshow(vol[10],cmap='gray') axes[2].imshow(vol[20],cmap='gray')for ax in axes: ax.axis('off')plt.show()

import imageio vol = imageio.volread( 'chest-data')view_1v2 = vol[pln, :, :] view_1v2 = vol[pln]
$$Axial$$

import imageio vol = imageio.volread( 'chest-data')view_1v2 = vol[pln, :, :] view_1v2 = vol[pln]view_0v2 = vol[:, row, :]
$$Coronal$$

import imageio vol = imageio.volread( 'chest-data')view_1v2 = vol[pln, :, :] view_1v2 = vol[pln]view_0v2 = vol[:, row, :]view_0v1 = vol[:, :, col]
$$Sagittal$$

Pixels may adopt any aspect ratio:

im = vol[:,:,100]
d0, d1, d2 = vol.meta['sampling']
d0, d1, d2
(2, 0.5, 0.5)
asp = d0 / d1
asp
3
plt.imshow(im, cmap='gray',
aspect=asp)
plt.show()

Biomedical Image Analysis in Python