Intensity Values

Biomedical Image Analysis in Python

Stephen Bailey

Instructor

Pixels and voxels

  • Pixels are 2D picture elements
  • Voxels are 3D volume elements
  • Two properties: intensity and location

foot-xray

Biomedical Image Analysis in Python

Data types and image size

Array's data type controls range of possible intensities

Type Range No. Val.
uint8 0, 255 256
int8 - 128, 127 256
uint16 0, 2$^{16}$ 2$^{16}$
int16 -2$^{15}$, 2$^{15}$ 2$^{16}$
float16 ~-2$^{16}$, ~2$^{16}$ >>2$^{16}$
import imageio

im=imageio.imread('foot-xray.jpg')

im.dtype
    dtype('uint8')

im.size
153600
im_int64 = im.astype(np.uint64)
im_int64.size
1228800
Biomedical Image Analysis in Python

Histograms

  • Histograms: count number of pixels at each intensity value.
  • Implemented in scipy.ndimage
    • higher-dimensional arrays
    • masked data
  • Advanced techniques and functionality in scikit-image.
plt.plot(hist)
plt.show()
import scipy.ndimage as ndi

hist=ndi.histogram(im, min=0, max=255, bins=256)
hist.shape
(256,)

Histogram

Biomedical Image Analysis in Python

Equalization

  • Distributions often skewed toward low intensities (background values).

  • Equalization: redistribute values to optimize full intensity range.

  • Cumulative distribution function: (CDF) shows proportion of pixels in range.

Hist+CDF

Biomedical Image Analysis in Python

Equalization

import scipy.ndimage as ndi
hist = ndi.histogram(im, min=0, 
                         max=255,
                        bins=256)

cdf = hist.cumsum() / hist.sum() cdf.shape
(256,)
im_equalized = cdf[im] * 255

fig, axes = plt.subplots(2, 1) axes[0].imshow(im) axes[1].imshow(im_equalized) plt.show()

equalized-image

Biomedical Image Analysis in Python

Let's practice!

Biomedical Image Analysis in Python

Preparing Video For Download...