Evaluating implicit ratings models

Building Recommendation Engines with PySpark

Jamen Long

Data Scientist at Nike

Why RMSE worked before

dataframe with userId, movieId, rating and rating prediction showing rating and prediction similarity

Building Recommendation Engines with PySpark

Why RMSE doesn't work now

dataframe with userId, movieId, num_plays and rating prediction showing rating and prediction not similar

Building Recommendation Engines with PySpark

(ROEM) Rank Ordering Error Metric

$$\text{ROEM} = \frac{\sum_{u,i} r^t_{u,i} \text{rank}_{u,i}}{\sum_{u,i} r^t_{u,i}}$$

Building Recommendation Engines with PySpark

ROEM bad predictions

bad_prediction.show()
+-------+------+-----+--------+--------+
|userId |songId|plays|badPreds|percRank|
+-------+------+-----+--------+--------+
|    111|    22|    3|  0.0001|   1.000|
|    111|     9|    0|   0.999|   0.000|
|    111|   321|    0|    0.08|   0.500|
|    222|    84|    0|0.000003|   1.000|
|    222|   821|    2|    0.88|   0.000|
|    222|    91|    2|    0.73|   0.500|
|    333|  2112|    0|    0.90|   0.000|
|    333|    42|    2|    0.80|   0.500|
|    333|     6|    0|    0.01|   1.000|
+-------+------+-----+--------+--------+
Building Recommendation Engines with PySpark

ROEM: PercRank * plays

bp = bad_predictions.withColumn("np*rank", col("badPreds")*col("percRank"))
bp.show()
+-------+------+---------+--------+--------+-------+
|userId |songId|num_plays|badPreds|percRank|np*rank|
+-------+------+---------+--------+--------+-------+
|    111|    22|        3|  0.0001|   1.000|   3.00|
|    111|     9|        0|   0.999|   0.000|   0.00|
|    111|   321|        0|    0.08|   0.500|   0.00|
|    222|    84|        0|0.000003|   1.000|   0.00|
|    222|   821|        2|    0.88|   0.000|   0.00|
|    222|    91|        2|    0.73|   0.500|   1.00|
|    333|  2112|        0|    0.90|   0.000|   0.00|
|    333|    42|        2|    0.80|   0.500|   1.00|
|    333|     6|        0|    0.01|   1.000|   0.00|
+-------+------+---------+--------+--------+-------+
Building Recommendation Engines with PySpark

ROEM: bad predictions

+-------+------+---------+--------+--------+-------+
|userId |songId|num_plays|badPreds|percRank|np*rank|
+-------+------+---------+--------+--------+-------+
|    111|    22|        3|  0.0001|   1.000|   3.00|
|    111|     9|        0|   0.999|   0.000|   0.00|
|    111|   321|        0|    0.08|   0.500|   0.00|
|    222|    84|        0|0.000003|   1.000|   0.00|
|    222|   821|        2|    0.88|   0.000|   0.00|
|    222|    91|        2|    0.73|   0.500|   1.00|
|    333|  2112|        0|    0.90|   0.000|   0.00|
|    333|    42|        2|    0.80|   0.500|   1.00|
|    333|     6|        0|    0.01|   1.000|   0.00|
+-------+------+---------+--------+--------+-------+
numerator = bp.groupBy().sum("np*rank").collect()[0][0]
denominator = bp.groupBy().sum("num_plays").collect()[0][0]
print ("ROEM: "), numerator * 1.0/ denominator
ROEM: 5.0 / 9 = 0.556
Building Recommendation Engines with PySpark

Good predictions

gp = good_predictions.withColumn("np*rank", col("goodPreds")*col("percRank"))
gp.show()
+-------+------+---------+---------+--------+-------+
|userId |songId|num_plays|goodPreds|percRank|np*rank|
+-------+------+---------+---------+--------+-------+
|    111|    22|        3|      1.1|   0.000|  0.000|
|    111|    77|        0|     0.01|   0.500|  0.000|
|    111|    99|        0|    0.008|   1.000|  0.000|
|    222|    22|        0|   0.0003|   1.000|  0.000|
|    222|    77|        2|      1.5|   0.000|  0.000|
|    222|    99|        2|      1.4|   0.500|  1.000|
|    333|    22|        0|     0.90|   0.500|  0.000|
|    333|    77|        2|      1.6|   0.000|  0.000|
|    333|    99|        0|     0.01|   1.000|  0.000|
+-------+------+---------+---------+--------+-------+
Building Recommendation Engines with PySpark

ROEM: good predictions

+-------+------+---------+---------+--------+-------+
|userId |songId|num_plays|goodPreds|percRank|np*rank|
+-------+------+---------+---------+--------+-------+
|    111|    22|        3|      1.1|   0.000|  0.000|
|    111|    77|        0|     0.01|   0.500|  0.000|
|    111|    99|        0|    0.008|   1.000|  0.000|
|    222|    22|        0|   0.0003|   1.000|  0.000|
|    222|    77|        2|      1.5|   0.000|  0.000|
|    222|    99|        2|      1.4|   0.500|  1.000|
|    333|    22|        0|     0.90|   0.500|  0.000|
|    333|    77|        2|      1.6|   0.000|  0.000|
|    333|    99|        0|     0.01|   1.000|  0.000|
+-------+------+---------+---------+--------+-------+
numerator = gp.groupBy().sum("np*rank").collect()[0][0]
denominator = gp.groupBy().sum("num_plays").collect()[0][0]
print ("ROEM: "), numerator * 1.0/ denominator
ROEM: 1.0 / 9 = 0.1111
Building Recommendation Engines with PySpark

ROEM: link to function on GitHub

+-------+------+---------+---------+--------+-------+
|userId |songId|num_plays|goodPreds|percRank|np*rank|
+-------+------+---------+---------+--------+-------+
|    111|    22|        3|      1.1|   0.000|  0.000|
|    111|    77|        0|     0.01|   0.500|  0.000|
|    111|    99|        0|    0.008|   1.000|  0.000|
|    222|    22|        0|   0.0003|   1.000|  0.000|
|    222|    77|        2|      1.5|   0.000|  0.000|
|    222|    99|        2|      1.4|   0.500|  1.000|
|    333|    22|        0|     0.90|   0.500|  0.000|
|    333|    77|        2|      1.6|   0.000|  0.000|
|    333|    99|        0|     0.01|   1.000|  0.000|
+-------+------+---------+---------+--------+-------+
numerator = gp.groupBy().sum("np*rank").collect()[0][0]
denominator = gp.groupBy().sum("num_plays").collect()[0][0]
print ("ROEM: "), numerator * 1.0/ denominator
ROEM: 1.0 / 9 = 0.1111
Building Recommendation Engines with PySpark

Building several ROEM models

(train, test) = implicit_ratings.randomSplit([.8, .2])
# Empty list to be filled with models
model_list = []

# Complete each of the hyperparameter value lists
ranks = [10, 20, 30, 40]
maxIters = [10, 20, 30, 40]
regParams = [.05, .1, .15]
alphas = [20, 40, 60, 80]

# For loop will automatically create and store ALS models
for r in ranks:
    for mi in maxIters:
        for rp in regParams:
            for a in alphas:
                model_list.append(ALS(userCol= "userId", itemCol= "songId", 
                ratingCol= "num_plays", rank = r, maxIter = mi, regParam = rp, 
                alpha = a, coldStartStrategy="drop",nonnegative = True, 
                implicitPrefs = True))
Building Recommendation Engines with PySpark

Error output

for model in model_list:
    # Fits each model to the training data
    trained_model = model.fit(train)

    # Generates test predictions
    predictions = trained_model.transform(test)

    # Evaluates each model's performance
    ROEM(predictions)
Building Recommendation Engines with PySpark

Let's practice!

Building Recommendation Engines with PySpark

Preparing Video For Download...