Intermediate Interactive Data Visualization with plotly in R
Adam Loy
Statistician, Carleton College
Question: Has the relationship between carbon dioxide emissions and income changed over time?
world_indicators
# A tibble: 11,387 x 11
country year income co2 military population urban life_expectancy four_regions
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 Afghan… 1960 1210 0.0461 NA 9000000 7.56e5 38.6 asia
2 Albania 1960 2790 1.24 NA 1640000 4.94e5 62.7 europe
3 Algeria 1960 6520 0.554 NA 11100000 3.39e6 52 africa
4 Andorra 1960 15200 NA NA 13400 7.84e3 NA europe
5 Angola 1960 3860 0.0975 NA 5640000 5.89e5 42.4 africa
# … with 1.138e+04 more rows, and 2 more variables: eight_regions <chr>, six_regions <chr>
Frame = plot at one time point
world_indicators %>%
plot_ly(x = ~income, y = ~co2) %>%
add_markers(frame = ~year, showlegend = FALSE) %>%
layout(xaxis = list(type = "log"), yaxis = list(type = "log"))
A graphical element (e.g. glyph) should represent a particular data point (e.g. Belgium)
world_indicators %>%
plot_ly(x = ~income, y = ~co2) %>%
add_markers(frame = ~year, ids = ~country, showlegend = FALSE) %>%
layout(xaxis = list(type = "log"), yaxis = list(type = "log"))
Intermediate Interactive Data Visualization with plotly in R