Intermediate Interactive Data Visualization with plotly in R
Adam Loy
Statistician, Carleton College
dplyr::glimpse(happy)
Rows: 141
Columns: 11
$ country <chr> "Afghanistan", "Albania", "Algeria", ...
$ happiness <dbl> 2.661718, 4.639548, 5.248912, 6.039330, ...
$ region <chr> "South Asia", "Central and Eastern Europe", ...
$ population <dbl> 35530081, 2873457, 41318142, 44271041, ...
$ log.gdp <dbl> 7.460144, 9.373718, 9.540244, 9.843519, ...
$ income <fct> low, upper-middle, upper-middle, high, ...
$ life.expectancy <dbl> 52.33953, 69.05166, 65.69919, 67.53870, ...
$ social.support <dbl> 0.4908801, 0.6376983, 0.8067539, 0.9066991, ...
$ freedom <dbl> 0.4270109, 0.7496110, 0.4366705, 0.8319662, ...
$ generosity <dbl> -0.106340349, -0.035140377, -0.194670126, -0.18629...
$ corruption <dbl> 0.9543926, 0.8761346, 0.6997742, 0.8410525, ...
happy %>%
plot_ly(x = ~life.expectancy, y = ~happiness) %>%
add_markers(color = ~income)
happy %>%
plot_ly(x = ~life.expectancy, y = ~happiness) %>%
add_markers(symbol = ~income)
happy %>%
plot_ly(x = ~life.expectancy, y = ~happiness) %>%
add_markers(color = ~population)
happy %>%
plot_ly(x = ~life.expectancy, y = ~happiness) %>%
add_markers(color = ~log10(population))
happy %>%
plot_ly(x = ~life.expectancy, y = ~happiness) %>%
add_markers(size = ~population)
happy %>%
plot_ly(
x = ~life.expectancy, y = ~happiness,
hoverinfo = "text",
text = ~paste("Country: ", country,
"</br> Population: ", population)
) %>%
add_markers(size = ~population) %>%
layout(
xaxis = list(title = "Healthy life expectancy"),
yaxis = list(title = "National happiness score")
)
Intermediate Interactive Data Visualization with plotly in R