Intermediate Interactive Data Visualization with plotly in R
Adam Loy
Statistician, Carleton College
Source: gapminder.org
world_indicators
# A tibble: 11,387 x 11
country year income co2 military population urban life_expectancy four_regions
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 Afghan… 1960 1210 0.0461 NA 9000000 7.56e5 38.6 asia
2 Albania 1960 2790 1.24 NA 1640000 4.94e5 62.7 europe
3 Algeria 1960 6520 0.554 NA 11100000 3.39e6 52 africa
4 Andorra 1960 15200 NA NA 13400 7.84e3 NA europe
5 Angola 1960 3860 0.0975 NA 5640000 5.89e5 42.4 africa
# … with 1.138e+04 more rows, and 2 more variables: eight_regions <chr>, six_regions <chr>
us_economy
# A tibble: 1,071 x 9
state year gdp employment home_owners house_price population region division
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 AK 1997 42262. NA 67.2 159. 609. West Pacific
2 AK 1998 41157. NA 66.3 164. 615. West Pacific
3 AK 1999 40722. NA 66.4 169. 620. West Pacific
4 AK 2000 39517. NA 66.4 172. 628. West Pacific
5 AK 2001 40974. NA 65.3 181. 634. West Pacific
# … with 1,066 more rows
world_indicators %>%
filter(year == 2014) %>%
plot_ly(
x = ~income, y = ~co2, hoverinfo = "text",
text = ~country
) %>%
add_markers(
size = ~population, color = ~six_regions,
marker = list(opacity = 0.5,
sizemode = "diameter",
sizeref = 2)
)
Intermediate Interactive Data Visualization with plotly in R