Predictive Analytics using Networked Data in R
María Óskarsdóttir, Ph.D.
Post-doctoral researcher
V(g)$degree<-degree(g) V(g)$triangles<-count_triangles(g) V(g)$betweeness<-betweenness(g,normalized=TRUE) V(g)$transitivity<-transitivity(g,type='local',isolates='zero')
A <- get.adjacency(g) preference <- c(1,1,1,1,1,1,0,0,0,0) age <- c(23,65,33,36,28,45,41,24,38,39) V(g)$rNeighbors <- as.vector(A%*%preference) V(g)$averageAge <- as.vector(A%*%age/V(g)$degree)
V(g)$pageRank<-page.rank(g)$vector V(g)$personalizePageRank<-page.rank(g, personalized = c(1,0,0,0,0,0,0,0,0,0))$vector g
IGRAPH UN-- 10 19 --
attr: name (v/c), degree (v/n), triangles (v/n), transitivity
| (v/n), rNeighbors (v/n), averageAge (v/n), pageRank (v/n),
| pPageRank (v/n), label (e/c)
edges (vertex names):
A--B A--C A--D A--E B--C B--D C--D C--G D--E D--F D--G E--F F--G F--I G--I G--H H--I H--J I--J
IGRAPH UN-- 10 19 --
attr: name (v/c), degree (v/n), triangles (v/n), transitivity
| (v/n), rNeighbors (v/n), averageAge (v/n), pageRank (v/n),
| pPageRank (v/n), label (e/c)
edges (vertex names):
[1] A--B A--C A--D A--E B--C B--D C--D C--G D--E D--F D--G E--F F--G F--I G--I G--H H--I H--J I--J
as_data_frame(g,what='vertices')
name degree triangles transitivity rNeighbors averageAge pageRank pPageRank
A A 4 4 0.6666667 4 40.50000 0.10238312 0.25528911
B B 3 3 1.0000000 3 30.66667 0.07917232 0.10363533
C C 4 4 0.6666667 3 41.25000 0.10164910 0.12156935
D D 6 7 0.4666667 5 39.16667 0.14693274 0.16625582
E E 3 2 0.6666667 3 34.66667 0.07953551 0.09366836
F F 4 3 0.5000000 2 35.75000 0.10335821 0.07466596
G G 5 4 0.4000000 3 35.20000 0.12732387 0.08473039
H H 3 2 0.6666667 0 39.33333 0.08675903 0.03285162
I I 4 3 0.5000000 1 37.25000 0.10994175 0.04785657
J J 2 1 1.0000000 0 31.00000 0.06294435 0.01947748
sum(is.na(dataset$degree))
2
library(corrplot)
M <- cor(dataset[,-1])
corrplot(M, method = 'circle')
Predictive Analytics using Networked Data in R