Spatial relationships with GeoPandas

Working with Geospatial Data in Python

Dani Arribas-Bel

Geographic Data Science Lab (University of Liverpool)

Element-wise spatial relationship methods

brussels.within(france)
False
paris.within(france)
True
Working with Geospatial Data in Python

Element-wise spatial relationship methods

brussels.within(france)
False

For full GeoDataFrame?

cities.head()
           name                                      geometry
0  Vatican City   POINT (12.45338654497177 41.90328217996012)
1    San Marino     POINT (12.44177015780014 43.936095834768)
2         Vaduz   POINT (9.516669472907267 47.13372377429357)
3       Lobamba  POINT (31.19999710971274 -26.46666746135247)
...
Working with Geospatial Data in Python

Element-wise spatial relationship methods

The within() operation for each geometry in cities:

cities.within(france)
0      False
1      False
2      False
       ...  
240    False
241    False
242    False
Length: 243, dtype: bool
cities['geometry'][0].within(france)
False
cities['geometry'][1].within(france)
False
cities['geometry'][2].within(france)
False

...

Working with Geospatial Data in Python

Filtering by spatial relation

Filter cities depending on the within() operation:

cities[cities.within(france)]
        name                                     geometry
10    Monaco  POINT (7.406913173465057 43.73964568785249)
13   Andorra    POINT (1.51648596050552 42.5000014435459)
235    Paris   POINT (2.33138946713035 48.86863878981461)
Working with Geospatial Data in Python

Filtering by spatial relation

Which countries does the Amazon flow through?

rivers = geopandas.read_file("ne_50m_rivers_lake_centerlines.shp")
rivers.head()
              type      name                                 geometry
0  Lake Centerline      Kama  LINESTRING (51.94 55.70, 51.88 55.69...
1            River      Kama  LINESTRING (53.69 58.21, 53.68 58.27...
2  Lake Centerline      Abay  LINESTRING (37.11 11.85, 37.15 11.89...
...
amazon = rivers[rivers['name'] == 'Amazonas'].geometry.squeeze()
mask = countries.intersects(amazon)
Working with Geospatial Data in Python

Filtering by spatial relation

countries[mask]
         name      continent                                 geometry
22     Brazil  South America  POLYGON ((-57.63 -30.22, -56.29 -28....
35   Colombia  South America  POLYGON ((-66.88 1.25, -67.07 1.13, ...
124      Peru  South America  POLYGON ((-69.53 -10.95, -68.67 -12....
  • within
  • contains
  • intersects

More at https://shapely.readthedocs.io/en/latest/

Working with Geospatial Data in Python

Shapely objects

paris.within(france)
True

GeoPandas

cities.within(france)
0      False
1      False
2      False
       ...
france.intersects(amazon)
False
countries.intersects(amazon)
0      False
1      False
2      False
       ...
Working with Geospatial Data in Python

Let's practice!

Working with Geospatial Data in Python

Preparing Video For Download...