Image Modeling with Keras
Ariel Rokem
Senior Data Scientist, University of Washington
from keras.layers import Conv2D
Conv2D(10, kernel_size=3, activation='relu')
from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten
model = Sequential() model.add(Conv2D(10, kernel_size=3, activation='relu', input_shape=(img_rows, img_cols, 1)))
model.add(Flatten()) model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
train_data.shape
(50, 28, 28, 1)
model.fit(train_data, train_labels, validation_split=0.2,
epochs=3)
model.evaluate(test_data, test_labels, epochs=3)
Image Modeling with Keras