Image Modeling with Keras
Ariel Rokem
Senior Data Scientist, University of Washington
model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 28, 28, 5) 50
_________________________________________________________________
conv2d_13 (Conv2D) (None, 28, 28, 15) 690
_________________________________________________________________
flatten_6 (Flatten) (None, 11760) 0
_________________________________________________________________
dense_9 (Dense) (None, 3) 35283
=================================================================
Total params: 36,023
Trainable params: 36,023
Non-trainable params: 0
_________________________________________________________________
result = np.zeros((im.shape[0]//2, im.shape[1]//2))
result[0, 0] = np.max(im[0:2, 0:2])
result[0, 1] = np.max(im[0:2, 2:4])
result[0, 2] = np.max(im[0:2, 4:6])
...
result[1, 0] = np.max(im[2:4, 0:2])
result[1, 1] = np.max(im[2:4, 2:4])
...
for ii in range(result.shape[0]):
for jj in range(result.shape[1]):
result[ii, jj] = np.max(im[ii*2:ii*2+2, jj*2:jj*2+2])
from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten, MaxPool2D
model = Sequential() model.add(Conv2D(5, kernel_size=3, activation='relu', input_shape=(img_rows, img_cols, 1)))
model.add(MaxPool2D(2))
model.add(Conv2D(15, kernel_size=3, activation='relu', input_shape=(img_rows, img_cols, 1)))
model.add(MaxPool2D(2))
model.add(Flatten()) model.add(Dense(3, activation='softmax'))
model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 26, 26, 5) 50
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 13, 13, 5) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 11, 11, 15) 690
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 5, 5, 15) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 375) 0
_________________________________________________________________
dense_1 (Dense) (None, 3) 1128
=================================================================
Total params: 1,868
Trainable params: 1,868
Non-trainable params: 0
_________________________________________________________________
Image Modeling with Keras