Image Modeling with Keras
Ariel Rokem
Senior Data Scientist, University of Washington
training = model.fit(train_data, train_labels, epochs=3, validation_split=0.2)
import matplotlib.pyplot as plt plt.plot(training.history['loss'])
plt.plot(training.history['val_loss'])
plt.show()
from keras.callbacks import ModelCheckpoint # This checkpoint object will store the model parameters # in the file "weights.hdf5" checkpoint = ModelCheckpoint('weights.hdf5', monitor='val_loss', save_best_only=True)
# Store in a list to be used during training callbacks_list = [checkpoint]
# Fit the model on a training set, using the checkpoint as a #callback model.fit(train_data, train_labels, validation_split=0.2, epochs=3, callbacks=callbacks_list)
model.load_weights('weights.hdf5')
model.predict_classes(test_data)
array([2, 2, 1, 2, 0, 1, 0, 1, 2, 0])
Image Modeling with Keras