Image Modeling with Keras
Ariel Rokem
Senior Data Scientist, University of Washington
from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
train_data.shape
(50, 28, 28, 1)
model.add(Dense(10, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
train_data = train_data.reshape((50, 784))
model.fit(train_data, train_labels,
validation_split=0.2,
epochs=3)
model.fit(train_data, train_labels,
validation_split=0.2,
epochs=3)
Train on 40 samples, validate on 10 samples
Epoch 1/3
32/40 [=========>......] - ETA: 0s - loss: 1.0117 - acc: 0.4688
40/40 [================] - 0s 4ms/step - loss: 1.0438 - acc: 0.4250
- val_loss: 0.9668 - val_acc: 0.4000
Epoch 2/3
32/40 [=========>......] - ETA: 0s - loss: 0.9556 - acc: 0.5312
40/40 [================] - 0s 195us/step - loss: 0.9404 - acc: 0.5750
- val_loss: 0.9068 - val_acc: 0.4000
Epoch 3/3
32/40 [=========>......] - ETA: 0s - loss: 0.9143 - acc: 0.5938
40/40 [================] - 0s 189us/step - loss: 0.8726 - acc: 0.6750
- val_loss: 0.8452 - val_acc: 0.4000
test_data = test_data.reshape((10, 784))
model.evaluate(test_data, test_labels)
10/10 [==============================] - 0s 335us/step
[1.0191701650619507, 0.4000000059604645]
Image Modeling with Keras