Image Modeling with Keras
Ariel Rokem
Senior Data Scientist, University of Washington
In each learning step:
from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten, Dropout
model = Sequential() model.add(Conv2D(5, kernel_size=3, activation='relu', input_shape=(img_rows, img_cols, 1)))
model.add(Dropout(0.25))
model.add(Conv2D(15, kernel_size=3, activation='relu')) model.add(Flatten()) model.add(Dense(3, activation='softmax'))
from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten, BatchNormalization
model = Sequential() model.add(Conv2D(5, kernel_size=3, activation='relu', input_shape=(img_rows, img_cols, 1)))
model.add(BatchNormalization())
model.add(Conv2D(15, kernel_size=3, activation='relu')) model.add(Flatten()) model.add(Dense(3, activation='softmax'))
The disharmony between dropout and batch normalization
Image Modeling with Keras