Image Modeling with Keras
Ariel Rokem
Senior Data Scientist, University of Washington
array = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
kernel = np.array([-1, 1])
conv = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])
conv[0] = (kernel * array[0:2]).sum() conv[1] = (kernel * array[1:3]).sum() conv[2] = (kernel * array[2:4]).sum() ...
for ii in range(8): conv[ii] = (kernel * array[ii:ii+2]).sum() conv
array([0, 0, 0, 0, 1, 0, 0, 0, 0])
array = np.array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0]) kernel = np.array([-1, 1])
conv = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0]) for ii in range(8): conv[ii] = (kernel * array[ii:ii+2]).sum()
conv
array([ 0, 1, 0, -1, 0, 1, 0, -1, 0])
kernel = np.array([[-1, 1], [-1, 1]])
conv = np.zeros((27, 27)
for ii in range(27): for jj in range(27): window = image[ii:ii+2, jj:jj+2] conv[ii, jj] = np.sum(window * kernel)
Image Modeling with Keras