Other Considerations for Matrix-Vector Equations

Linear Algebra for Data Science in R

Eric Eager

Data Scientist at Pro Football Focus

More Equations than Unknowns

Linear Algebra for Data Science in R

More Equations than Unknowns

Linear Algebra for Data Science in R

Fewer Equations than Unknowns

Linear Algebra for Data Science in R

Some Options for Non-Square Matrices

  • Row Reduction (By Hand, Difficult for Big Problems)

  • Least Squares (If More Rows Than Columns - Used in Linear Regression)

  • Singular Value Decomposition (If More Columns Than Rows - Used in Principal Component Analysis)

  • Generalized or Pseudo-Inverse

Linear Algebra for Data Science in R

Moore-Penrose Generalized Inverse

library(MASS)
print(A)
     [,1] [,2]
[1,]    2    3
[2,]   -1    4
[3,]    1    7
ginv(A)
          [,1]        [,2]       [,3]
[1,] 0.3333333 -0.30303030 0.03030303
[2,] 0.0000000  0.09090909 0.09090909
ginv(A)%*%A
     [,1]          [,2]
[1,]    1 -1.110223e-16
[2,]    0  1.000000e+00
A%*%ginv(A)
           [,1]       [,2]      [,3]
[1,]  0.6666667 -0.3333333 0.3333333
[2,] -0.3333333  0.6666667 0.3333333
[3,]  0.3333333  0.3333333 0.6666667
Linear Algebra for Data Science in R

Moore-Penrose Generalized Inverse

print(A)
     [,1] [,2]
[1,]    2    3
[2,]   -1    4
[3,]    1    7
print(b)
1 7 8
x <- ginv(A)%*%b
A%*%x
     [,1]
[1,]    1
[2,]    7
[3,]    8
Linear Algebra for Data Science in R

Let's Practice

Linear Algebra for Data Science in R

Preparing Video For Download...