Linear Algebra for Data Science in R
Eric Eager
Data Scientist at Pro Football Focus
print(A)
[,1] [,2] [,3]
[1,] -1 2 4
[2,] 0 7 12
[3,] 0 0 -4
eigen(A)
eigen() decomposition
$`values`
[1] 7 -4 -1
$vectors
[,1] [,2] [,3]
[1,] 0.2425356 -0.3789810 1
[2,] 0.9701425 -0.6821657 0
[3,] 0.0000000 0.6253186 0
print(A)
[,1] [,2] [,3]
[1,] -1 2 4
[2,] 0 7 12
[3,] 0 0 -4
Extracting eigenvalue and eigenvector information:
E <- eigen(A) E$values[1]
E$vectors[, 1]
7
0.2425356 0.9701425 0.0000000
print(A)
[,1] [,2]
[1,] 1 2
[2,] -2 -1
eigen(A)
eigen() decomposition
$`values`
[1] 0+1.732051i 0-1.732051i
$vectors
[,1] [,2]
[1,] 0.3535534+0.6123724i 0.3535534-0.6123724i
[2,] -0.7071068+0.0000000i -0.7071068+0.0000000i
eigen(A)$values[1]*eigen(A)$values[2]
3+0i
Linear Algebra for Data Science in R