Advanced NLP with spaCy
Ines Montani
spaCy core developer
Statistical models | Rule-based systems | |
---|---|---|
Use cases | application needs to generalize based on examples | |
Real-world examples | product names, person names, subject/object relationships | |
spaCy features | entity recognizer, dependency parser, part-of-speech tagger |
Statistical models | Rule-based systems | |
---|---|---|
Use cases | application needs to generalize based on examples | dictionary with finite number of examples |
Real-world examples | product names, person names, subject/object relationships | countries of the world, cities, drug names, dog breeds |
spaCy features | entity recognizer, dependency parser, part-of-speech tagger | tokenizer, Matcher , PhraseMatcher |
# Initialize with the shared vocab from spacy.matcher import Matcher matcher = Matcher(nlp.vocab)
# Patterns are lists of dictionaries describing the tokens pattern = [{'LEMMA': 'love', 'POS': 'VERB'}, {'LOWER': 'cats'}] matcher.add('LOVE_CATS', None, pattern)
# Operators can specify how often a token should be matched pattern = [{'TEXT': 'very', 'OP': '+'}, {'TEXT': 'happy'}]
# Calling matcher on doc returns list of (match_id, start, end) tuples doc = nlp("I love cats and I'm very very happy") matches = matcher(doc)
matcher = Matcher(nlp.vocab) matcher.add('DOG', None, [{'LOWER': 'golden'}, {'LOWER': 'retriever'}]) doc = nlp("I have a Golden Retriever")
for match_id, start, end in matcher(doc): span = doc[start:end] print('Matched span:', span.text)
# Get the span's root token and root head token print('Root token:', span.root.text) print('Root head token:', span.root.head.text)
# Get the previous token and its POS tag print('Previous token:', doc[start - 1].text, doc[start - 1].pos_)
Matched span: Golden Retriever
Root token: Retriever Root head token: have
Previous token: a DET
PhraseMatcher
like regular expressions or keyword search – but with access to the tokens!Doc
object as patternsMatcher
from spacy.matcher import PhraseMatcher matcher = PhraseMatcher(nlp.vocab)
pattern = nlp("Golden Retriever") matcher.add('DOG', None, pattern) doc = nlp("I have a Golden Retriever")
# iterate over the matches for match_id, start, end in matcher(doc): # get the matched span span = doc[start:end] print('Matched span:', span.text)
Matched span: Golden Retriever
Advanced NLP with spaCy