Advanced NLP with spaCy
Ines Montani
spaCy core developer

nlpdoc.entsdoc, modifies it and returns itnlp.add_pipe methoddef custom_component(doc): # Do something to the doc here return docnlp.add_pipe(custom_component)
def custom_component(doc):
# Do something to the doc here
return doc
nlp.add_pipe(custom_component)
| Argument | Description | Example |
|---|---|---|
last |
If True, add last |
nlp.add_pipe(component, last=True) |
first |
If True, add first |
nlp.add_pipe(component, first=True) |
before |
Add before component | nlp.add_pipe(component, before='ner') |
after |
Add after component | nlp.add_pipe(component, after='tagger') |
# Create the nlp object nlp = spacy.load('en_core_web_sm')# Define a custom component def custom_component(doc):# Print the doc's length print('Doc length:' len(doc))# Return the doc object return doc# Add the component first in the pipeline nlp.add_pipe(custom_component, first=True)# Print the pipeline component names print('Pipeline:', nlp.pipe_names)
Pipeline: ['custom_component', 'tagger', 'parser', 'ner']
# Create the nlp object nlp = spacy.load('en_core_web_sm') # Define a custom component def custom_component(doc): # Print the doc's length print('Doc length:' len(doc)) # Return the doc object return doc # Add the component first in the pipeline nlp.add_pipe(custom_component, first=True)# Process a text doc = nlp("Hello world!")
Doc length: 3
Advanced NLP with spaCy