Example of a scheduling problem

Supply Chain Analytics in Python

Aaren Stubberfield

Supply Chain Analytics Mgr.

Expected Demand

Day of Week Drivers Needed
0 = Monday 11
1= Tuesday 14
2 = Wednesday 23
3 = Thursday 21
4 = Friday 20
5 = Saturday 15
6 = Sunday 8

Question:

  • How many drivers, in total, do we need to hire?

Constraint:

  • Each driver works for 5 consecutive days, followed by 2 days off, repeated weekly
Supply Chain Analytics in Python
Step Definition
Decision Var X$_{\text{i}}$ = the number of drivers working on day _i_
Objective minimize z = X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$
Subject to X$_{\text{0}}$ ≥ 11
X$_{\text{1}}$ ≥ 14
X$_{\text{2}}$ ≥ 23
X$_{\text{3}}$ ≥ 21
X$_{\text{4}}$ ≥ 20
X$_{\text{i}}$ ≥ 0 (i = 0, ..., 6)
Supply Chain Analytics in Python
Step Definition
Decision Var X$_{\text{i}}$ = the number of drivers working on day _i_
Objective minimize z = X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$
Subject to X$_{\text{0}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ ≥ 11
X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ ≥ 14
X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{6}}$ ≥ 23
X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ ≥ 21
X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ ≥ 15
X$_{\text{i}}$ ? 0 (i = 0, ..., 6)
Supply Chain Analytics in Python

Coding example

# Initialize Class
model = LpProblem("Minimize Staffing", 
                   LpMinimize)
days = list(range(7))

# Define Decision Variables
x = LpVariable.dicts('staff_', days,
                      lowBound=0, cat='Integer')

# Define Objective
model += lpSum([x[i] for i in days])
# Define Constraints
model += x[0] + x[3] + x[4] + x[5] + x[6] >= 11
model += x[0] + x[1] + x[4] + x[5] + x[6] >= 14
model += x[0] + x[1] + x[2] + x[5] + x[6] >= 23
model += x[0] + x[1] + x[2] + x[3] + x[6] >= 21
model += x[0] + x[1] + x[2] + x[3] + x[4] >= 20
model += x[1] + x[2] + x[3] + x[4] + x[5] >= 15
model += x[2] + x[3] + x[4] + x[5] + x[6] >= 8

# Solve Model
model.solve()
Supply Chain Analytics in Python

Summary

  • Our initial variables did not work
  • Decision variables to incorporate some of the constraints
Supply Chain Analytics in Python

Practice time!

Supply Chain Analytics in Python

Preparing Video For Download...