Supply Chain Analytics in Python
Aaren Stubberfield
Supply Chain Analytics Mgr.
Expected Demand
Day of Week | Drivers Needed |
---|---|
0 = Monday | 11 |
1= Tuesday | 14 |
2 = Wednesday | 23 |
3 = Thursday | 21 |
4 = Friday | 20 |
5 = Saturday | 15 |
6 = Sunday | 8 |
Question:
Constraint:
Step | Definition |
---|---|
Decision Var | X$_{\text{i}}$ = the number of drivers working on day _i_ |
Objective | minimize z = X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ |
Subject to | X$_{\text{0}}$ ≥ 11 |
X$_{\text{1}}$ ≥ 14 | |
X$_{\text{2}}$ ≥ 23 | |
X$_{\text{3}}$ ≥ 21 | |
X$_{\text{4}}$ ≥ 20 | |
X$_{\text{i}}$ ≥ 0 (i = 0, ..., 6) |
Step | Definition |
---|---|
Decision Var | X$_{\text{i}}$ = the number of drivers working on day _i_ |
Objective | minimize z = X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ |
Subject to | X$_{\text{0}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ ≥ 11 |
X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ ≥ 14 | |
X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{6}}$ ≥ 23 | |
X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ ≥ 21 | |
X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ ≥ 15 | |
X$_{\text{i}}$ ? 0 (i = 0, ..., 6) |
# Initialize Class
model = LpProblem("Minimize Staffing",
LpMinimize)
days = list(range(7))
# Define Decision Variables
x = LpVariable.dicts('staff_', days,
lowBound=0, cat='Integer')
# Define Objective
model += lpSum([x[i] for i in days])
# Define Constraints
model += x[0] + x[3] + x[4] + x[5] + x[6] >= 11
model += x[0] + x[1] + x[4] + x[5] + x[6] >= 14
model += x[0] + x[1] + x[2] + x[5] + x[6] >= 23
model += x[0] + x[1] + x[2] + x[3] + x[6] >= 21
model += x[0] + x[1] + x[2] + x[3] + x[4] >= 20
model += x[1] + x[2] + x[3] + x[4] + x[5] >= 15
model += x[2] + x[3] + x[4] + x[5] + x[6] >= 8
# Solve Model
model.solve()
Supply Chain Analytics in Python