Supply Chain Analytics in Python
Aaren Stubberfield
Supply Chain Analytics Mgr.
Expected Demand
| Day of Week | Drivers Needed | 
|---|---|
| 0 = Monday | 11 | 
| 1= Tuesday | 14 | 
| 2 = Wednesday | 23 | 
| 3 = Thursday | 21 | 
| 4 = Friday | 20 | 
| 5 = Saturday | 15 | 
| 6 = Sunday | 8 | 
Question:
Constraint:
| Step | Definition | 
|---|---|
| Decision Var | X$_{\text{i}}$ = the number of drivers working on day _i_ | 
| Objective | minimize z = X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ | 
| Subject to | X$_{\text{0}}$ ≥ 11 | 
| X$_{\text{1}}$ ≥ 14 | |
| X$_{\text{2}}$ ≥ 23 | |
| X$_{\text{3}}$ ≥ 21 | |
| X$_{\text{4}}$ ≥ 20 | |
| X$_{\text{i}}$ ≥ 0 (i = 0, ..., 6) | 
| Step | Definition | 
|---|---|
| Decision Var | X$_{\text{i}}$ = the number of drivers working on day _i_ | 
| Objective | minimize z = X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ | 
| Subject to | X$_{\text{0}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ ≥ 11 | 
| X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ + X$_{\text{6}}$ ≥ 14 | |
| X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{6}}$ ≥ 23 | |
| X$_{\text{0}}$ + X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ ≥ 21 | |
| X$_{\text{1}}$ + X$_{\text{2}}$ + X$_{\text{3}}$ + X$_{\text{4}}$ + X$_{\text{5}}$ ≥ 15 | |
| X$_{\text{i}}$ ? 0 (i = 0, ..., 6) | 
# Initialize Class
model = LpProblem("Minimize Staffing", 
                   LpMinimize)
days = list(range(7))
# Define Decision Variables
x = LpVariable.dicts('staff_', days,
                      lowBound=0, cat='Integer')
# Define Objective
model += lpSum([x[i] for i in days])
# Define Constraints
model += x[0] + x[3] + x[4] + x[5] + x[6] >= 11
model += x[0] + x[1] + x[4] + x[5] + x[6] >= 14
model += x[0] + x[1] + x[2] + x[5] + x[6] >= 23
model += x[0] + x[1] + x[2] + x[3] + x[6] >= 21
model += x[0] + x[1] + x[2] + x[3] + x[4] >= 20
model += x[1] + x[2] + x[3] + x[4] + x[5] >= 15
model += x[2] + x[3] + x[4] + x[5] + x[6] >= 8
# Solve Model
model.solve()
Supply Chain Analytics in Python