Supply Chain Analytics in Python
Aaren Stubberfield
Supply Chain Analytics Mgr.
Complex Bakery Example
# Define Decision Variables
A = LpVariable('A', lowBound=0, cat='Integer')
B = LpVariable('B', lowBound=0, cat='Integer')
C = LpVariable('C', lowBound=0, cat='Integer')
D = LpVariable('D', lowBound=0, cat='Integer')
E = LpVariable('E', lowBound=0, cat='Integer')
F = LpVariable('F', lowBound=0, cat='Integer')
# Define Objective Function
var_dict = {"A":A, "B":B, "C":C, "D":D, "E":E, "F":F}
# Define Objective Function
model += lpSum([profit_by_cake[type] * var_dict[type] for type in cake_types])
LpVariable(name, indexs, lowBound=None, upBound=None, cat='Continuous')
name
= The prefix to the name of each LP variable createdindexs
= A list of strings of the keys to the dictionary of LP variableslowBound
= Lower boundupBound
= Upper boundcat
= The type of variable this isLpVariable.dicts()
often used with Python's list comprehension Transportation Optimization
# Define Decision Variables customers = ['East','South','Midwest','West'] warehouse = ['New York','Atlanta'] transport = LpVariable.dicts("route", [(w,c) for w in warehouse for c in customers], lowBound=0, cat='Integer')
# Define Objective model += lpSum([cost[(w,c)]*transport[(w,c)] for w in warehouse for c in customers])
LpVariable.dicts()
Supply Chain Analytics in Python