Analyzing Social Media Data in Python
Alex Hanna
Computational Social Scientist
Degree
nx.in_degree_centrality(T)
nx.out_degree_centrality(T)
nx.betweenness_centrality(T)
bc = nx.betweenness_centrality(T)
betweenness = pd.DataFrame( list(bc.items()), columns = ['Name', 'Cent'])
print(betweenness.sort_values( 'Cent', ascending = False).head())
Name Centrality
0 0 0.232540
23 23 0.158514
7 7 0.158514
15 15 0.158514
21 21 0.157588
degree_rt = pd.DataFrame(list(G_rt.in_degree()), columns = ['screen_name', 'degree']) degree_reply = pd.DataFrame(list(G_reply.in_degree()), columns = ['screen_name', 'degree'])
ratio = degree_rt.merge(degree_reply, on = 'screen_name', suffixes = ('_rt', '_reply'))
ratio['ratio'] = ratio['degree_reply'] / ratio['degree_rt']
Analyzing Social Media Data in Python