GARCH Models in R
Kris Boudt
Professor of finance and econometrics
names(coef(flexgarchfit))
"mu" "ar1" "omega" "alpha1" "beta1" "gamma1" "skew" "shape"
ar1
parameter is zero, you can use a constant mean model.gamma1
parameter is zero, there is no GARCH-in-mean and you can use a standard GARCH model instead of the GJR.ar1
and gamma1
parameters 0?round(coef(flexgarchfit), 6)
mu ar1 omega alpha1 beta1 gamma1 skew shape
-0.000021 0.000150 0.000000 0.034281 0.968688 -0.010093 1.013487 9.139252
How? By comparing the estimated parameter to its standard error
Standard error is the standard deviation of the parameter estimate
t-statistic = estimated parameter / standard error
Specify and estimate the model
flexgarchspec <- ugarchspec(mean.model = list(armaOrder = c(1, 0)),
variance.model = list(model = "gjrGARCH"),
distribution.model = "sstd")
flexgarchfit <- ugarchfit(data = msftret, spec = flexgarchspec)
Print table with parameter estimates, standard errors, and t-statistics using:
round(flexgarchfit@fit$matcoef, 6)
round(flexgarchfit@fit$matcoef, 6)
Estimate Std. Error t value Pr(>|t|)
mu 0.000610 0.000189 3.220843 0.001278
ar1 -0.037799 0.013718 -2.755532 0.005860
omega 0.000002 0.000001 2.617696 0.008853
alpha1 0.034574 0.003395 10.182558 0.000000
beta1 0.935927 0.007163 130.667531 0.000000
gamma1 0.055483 0.009772 5.677857 0.000000
skew 1.059959 0.020676 51.264435 0.000000
shape 4.392327 0.256700 17.110745 0.000000
Note: 3.220843 = 0.000610 / 0.000189
, -2.755532 = -0.037799 / 0.013718
, ...
t-statistic = estimated parameter / standard error
Rule of thumb for deciding:
If |t-statistic| > 2
Then the estimated parameter is statistically significant
Therefore we conclude that true parameter $\neq$ 0.
All t-statistics are larger than 2: all parameter estimates are statistically significant.
Estimate Std. Error t value Pr(>|t|)
mu 0.000610 0.000189 3.220843 0.001278
ar1 -0.037799 0.013718 -2.755532 0.005860
omega 0.000002 0.000001 2.617696 0.008853
alpha1 0.034574 0.003395 10.182558 0.000000
beta1 0.935927 0.007163 130.667531 0.000000
gamma1 0.055483 0.009772 5.677857 0.000000
skew 1.059959 0.020676 51.264435 0.000000
shape 4.392327 0.256700 17.110745 0.0000000
Same conclusion can be reached using the p-values in the last column.
Rule of thumb for deciding:
If p-value < 5%
Then the estimated parameter is statistically significant
Therefore we conclude that true parameter $\neq$ 0
GARCH Models in R