GARCH Models in R
Kris Boudt
Professor of finance and econometrics
Then a constant mean, standard GARCH(1, 1) with student t distribution is an appropriate specification to use:
garchspec <- ugarchspec(mean.model = list(armaOrder = c(0, 0)),
variance.model = list(model = "sGARCH"),
distribution.model = "std")
setfixed()
setbounds()
Specification and estimation
garchspec <- ugarchspec(mean.model = list(armaOrder = c(0, 0)),
variance.model = list(model = "sGARCH"),
distribution.model = "std")
garchfit <- ugarchfit(data = EURUSDret, spec = garchspec)
Estimation results
coef(garchfit)
mu omega alpha1 beta1 shape
-3.562136e-05 8.005123e-08 3.097322e-02 9.674496e-01 8.821902e+00
alpha1 = 0.05
and shape = 6
: impose those values in the estimation.setfixed()
method on a ugarchspec
objectsetfixed(garchspec) <- list(alpha1 = 0.05, shape = 6)
Result
garchfit <- ugarchfit(data = EURUSDret, spec = garchspec)
coef(garchfit)
mu omega alpha1 beta1 shape
-4.142922e-05 2.061772e-07 5.000000e-02 9.489622e-01 6.000000e+00
setbounds()
method.setbounds(garchspec) <- list(alpha1 = c(0.05, 0.2), beta1 = c(0.8, 0.95))
Use the information you have:
to make the GARCH dynamics realistic:
sd(EURUSDret) # returns a value of 0.006194049
variance.targeting = TRUE
in variance.model
of ugarchspec()
:garchspec <- ugarchspec(mean.model = list(armaOrder = c(0,0)),
variance.model = list(model = "sGARCH",
variance.targeting = TRUE),
distribution.model = "std")
garchfit <- ugarchfit(data = EURUSDret, spec = garchspec)
all.equal(uncvariance(garchfit), sd(EURUSDret) ^ 2, tol = 1e-4)
TRUE
GARCH Models in R