Dimensions of portfolio performance

Introduction to Portfolio Analysis in R

Kris Boudt

Professor, Free University Brussels & Amsterdam

Interpretation of portfolio returns

ch_2_video_1.003.png

Introduction to Portfolio Analysis in R

Interpretation of portfolio returns

ch_2_video_1.004.png

Introduction to Portfolio Analysis in R

Interpretation of portfolio returns

ch_2_video_1.005.png

Introduction to Portfolio Analysis in R

Risk vs. reward

ch_2_video_1.006.png

Introduction to Portfolio Analysis in R

Need for performance measure

ch_2_video_1.007.png

Introduction to Portfolio Analysis in R

Arithmetic mean return

  • Assume a sample of T portfolio return observations:
    • $R_1 , R_2, ... , R_T$
  • Reward measurement: Arithmetic mean return is given:

    • $\displaystyle \hat{\mu} = \frac{R_1 , R_2, ... , R_T}{T}$
  • It shows how large the portfolio return is on average

Introduction to Portfolio Analysis in R

Risk: portfolio volatility

  • De-meaned return

    • $R_i - \hat{\mu}$
  • Variance of the portfolio

    • $\displaystyle \hat{\sigma}^2 = \frac{(R_1 - \hat{\mu})^2 + (R_2 - \hat{\mu})^2 + ... + (R_T - \hat{\mu})^2}{T_1}$
  • Portfolio volatility:

    • $\displaystyle \hat{\sigma} = \sqrt{\hat{\sigma}^2}$
Introduction to Portfolio Analysis in R

No linear compensation in return

  • Mismatch between average return and effective return

ch_2_video_1.018.png

Introduction to Portfolio Analysis in R

No linear compensation in return

  • Mismatch between average return and effective return

Introduction to Portfolio Analysis in R

No linear compensation in return

  • Mismatch between average return and effective return

ch_2_video_1.020.png

Introduction to Portfolio Analysis in R

Geometric mean return

  • Formula for Geometric Mean for a sample of T portfolio return observations $R_1, R_2, ..., R_T$:

Geometric mean = $[(1+R_1)\cdot(1+R_2)\cdot...(1+R_T)]^{1/T} - 1$

  • Example: +50% & -50% return

    • Geometric mean = $[(1+ 0.50)\cdot (1-0.50)]^{1/2} -1$

    • = $0.75^{1/2} - 1$

    • = -13.4%

Introduction to Portfolio Analysis in R

SP500.png

Introduction to Portfolio Analysis in R

Let's practice!

Introduction to Portfolio Analysis in R

Preparing Video For Download...