Analyzing US Census Data in Python
Lee Hachadoorian
Asst. Professor of Instruction, Temple University
year pct_unemployed
0 2011 10.264992
0 2012 9.373092
0 2013 8.435212
0 2014 7.226895
0 2015 6.297886
0 2016 5.750313
0 2017 5.281027
sns.barplot(
x = "year", y = "pct_unemployed",
color = "cornflowerblue",
data = employment)
print(hispanic_unemployment)
year pct_hisp_male_25to54_unemp pct_hisp_female_25to54_unemp
0 2011 9.352638 11.426135
0 2012 8.062535 10.751855
0 2013 6.915451 9.524808
0 2014 5.724187 8.285590
0 2015 5.040303 7.070101
0 2016 4.568206 6.521980
0 2017 4.184646 5.706956
# Rename columns col_rename = {"pct_hisp_male_25to54_unemp": "male", "pct_hisp_female_25to54_unemp": "female"} hispanic_unemployment.rename(columns = col_rename, inplace = True)
# Melt DataFrame tidy_unemp = hispanic_unemployment.melt( id_vars = "year", value_vars = ["male", "female"], var_name = "sex", value_name = "pct_unemployed")
# Rename columns col_rename = {"pct_hisp_male_25to54_unemp": "male", "pct_hisp_female_25to54_unemp": "female"} hispanic_unemployment.rename(columns = col_rename, inplace = True)
# Melt DataFrame tidy_unemp = hispanic_unemployment.melt( id_vars = "year", # value_vars = ["male", "female"], var_name = "sex", value_name = "pct_unemployed")
year sex pct_unemployed
0 2011 male 9.352638
1 2012 male 8.062535
2 2013 male 6.915451
3 2014 male 5.724187
4 2015 male 5.040303
5 2016 male 4.568206
6 2017 male 4.184646
7 2011 female 11.426135
8 2012 female 10.751855
9 2013 female 9.524808
10 2014 female 8.285590
11 2015 female 7.070101
12 2016 female 6.521980
13 2017 female 5.706956
sns.barplot(x = "year", y = "pct_unemployed", hue = "sex",
data = tidy_unemp)
Analyzing US Census Data in Python