Deep Learning with PyTorch
Ismail Elezi
Ph.D. Student of Deep Learning





import torch
torch.tensor([[2, 3, 5], [1, 2, 9]])
tensor([[ 2, 3, 5],
[ 1, 2, 9]])
torch.rand(2, 2)
tensor([[ 0.0374, -0.0936],
[ 0.3135, -0.6961]])
a = torch.rand((3, 5))
a.shape
torch.Size([3, 5])
import numpy as np
np.array([[2, 3, 5], [1, 2, 9]])
array([[ 2, 3, 5],
[ 1, 2, 9]])
np.random.rand(2, 2)
array([[ 0.0374, -0.0936],
[ 0.3135, -0.6961]])
a = np.random.randn(3, 5)
a.shape
(3, 5)
a = torch.rand((2, 2))
b = torch.rand((2, 2))
tensor([[-0.6110, 0.0145],
[ 1.3583, -0.0921]])
tensor([[ 0.0673, 0.6419],
[-0.0734, 0.3283]])
torch.matmul(a, b)
tensor([[-0.0422, -0.3875],
[ 0.0981, 0.8417]])
a = np.random.rand(2, 2)
b = np.random.rand(2, 2)
array([[-0.6110, 0.0145],
[ 1.3583, -0.0921]])
array([[ 0.0673, 0.6419],
[-0.0734, 0.3283]])
np.dot(a, b)
array([[-0.0422, -0.3875],
[ 0.0981, 0.8417]])
a * b
tensor([[-0.0411, 0.0093],
[-0.0998, -0.0302]])
np.multiply(a, b)
array([[-0.0411, 0.0093],
[-0.0998, -0.0302]])
a_torch = torch.zeros(2, 2)
tensor([[0., 0.],
[0., 0.])
b_torch = torch.ones(2, 2)
tensor([[1., 1.],
[1., 1.])
c_torch = torch.eye(2)
tensor([[1., 0.],
[0., 1.]
a_numpy = np.zeros((2, 2))
array([[0., 0.],
[0., 0.]])
b_numpy = np.ones((2, 2))
array([[1., 1.],
[1., 1.]])
c_numpy = np.identity(2)
array([[1., 0.],
[0., 1.]])
d_torch = torch.from_numpy(c_numpy)
tensor([[1., 0.],
[0., 1.],
dtype=torch.float64)
d = c_torch.numpy()
array([[1., 0.],
[0., 1.]])
torch.matmul(a, b) # multiples torch tensors a and b
* # element-wise multiplication between two torch tensors
torch.eye(n) # creates an identity torch tensor with shape (n, n)
torch.zeros(n, m) # creates a torch tensor of zeros with shape (n, m)
torch.ones(n, m) # creates a torch tensor of ones with shape (n, m)
torch.rand(n, m) # creates a random torch tensor with shape (n, m)
torch.tensor(l) # creates a torch tensor based on list l
Deep Learning with PyTorch