Introduction to Deep Learning with PyTorch
Maham Faisal Khan
Senior Data Scientist
from torch.data.utils import TensorDataset
data = np.array([[1, 2, 3], [4, 5, 6]])
tensor = torch.tensor(data)
dataset = TensorDataset(tensor)
dataset[0]
tensor([[1, 2, 3], dtype=torch.float64)
TensorDataset:
df = pd.read_csv(...)
df_numpy = df.to_numpy()
dataset = TensorDataset(df_numpy)
from torch.utils.data import Dataset
class WaterDataset(Dataset):
def __init__(self, csv_path):
super(WaterDataset, self).__init__()
df = pd.read_csv(dataset_path, index_col=0)
self.data = df.to_numpy()
def __len__(self):
# Return the number of samples in our dataset
return self.data.shape[0]
def __getitem__(self, index):
# Return features (array for 9 values) and label (single float) at the given index
return features, label
from torch.utils.data import DataLoader
dataset = WaterDataset(csv_path)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
# Create an iterator
dataloader = iter(dataloader)
# Get the next data sample
features, labels = next(dataloader)
# Run a forward pass
predictions = model(features)
# Loop through the dataloader directly
for data in dataloader:
# Extract features and labels
features, labels = data
# Run a forward pass
predictions = model(features)
Introduction to Deep Learning with PyTorch