Visualizing Time Series Data in Python
Thomas Vincent
Head of Data Science, Getty Images
import statsmodels.api as sm
import matplotlib.pyplot as plt
from pylab import rcParams
rcParams['figure.figsize'] = 11, 9
decomposition = sm.tsa.seasonal_decompose(
co2_levels['co2'])
fig = decomposition.plot()
plt.show()
print(dir(decomposition))
['__class__', '__delattr__', '__dict__',
... 'plot', 'resid', 'seasonal', 'trend']
print(decomposition.seasonal)
datestamp
1958-03-29 1.028042
1958-04-05 1.235242
1958-04-12 1.412344
1958-04-19 1.701186
decomp_seasonal = decomposition.seasonal
ax = decomp_seasonal.plot(figsize=(14, 2))
ax.set_xlabel('Date')
ax.set_ylabel('Seasonality of time series')
ax.set_title('Seasonal values of the time series')
plt.show()
decomp_trend = decomposition.trend
ax = decomp_trend.plot(figsize=(14, 2))
ax.set_xlabel('Date')
ax.set_ylabel('Trend of time series')
ax.set_title('Trend values of the time series')
plt.show()
decomp_resid = decomp.resid
ax = decomp_resid.plot(figsize=(14, 2))
ax.set_xlabel('Date')
ax.set_ylabel('Residual of time series')
ax.set_title('Residual values of the time series')
plt.show()
Visualizing Time Series Data in Python