Introduction to A/B Testing in R
Page Piccinini
Instructor
library(tidyverse)experiment_data <- read_csv("experiment_data.csv") experiment_data
# A tibble: 588 x 3
visit_date condition clicked_adopt_today
<date> <chr> <int>
1 2018-01-01 control 0
2 2018-01-01 control 1
3 2018-01-01 control 0
4 2018-01-01 control 0
5 2018-01-01 test 0
library(tidyverse) experiment_data <- read_csv("experiment_data.csv") experiment_dataexperiment_data %>% group_by(condition) %>% summarize(conversion_rate = mean(clicked_adopt_today))
# A tibble: 2 x 2
condition conversion_rate
<chr> <dbl>
1 control 0.1666667
2 test 0.3843537
library(tidyverse)
experiment_data <- read_csv("experiment_data.csv")
experiment_data
experiment_data %>%
group_by(condition) %>%
summarize(conversion_rate = mean(clicked_adopt_today))
library(tidyverse) experiment_data <- read_csv("experiment_data.csv") experiment_dataexperiment_data %>% group_by(visit_date, condition) %>% summarize(conversion_rate = mean(clicked_adopt_today))
library(tidyverse) experiment_data <- read_csv("experiment_data.csv") experiment_dataexperiment_data_sum <- experiment_data %>% group_by(visit_date, condition) %>% summarize(conversion_rate = mean(clicked_adopt_today))ggplot(experiment_data_sum, aes(x = visit_date, y = conversion_rate )) + geom_point() + geom_line()
library(tidyverse)
experiment_data <- read_csv("experiment_data.csv")
experiment_data
experiment_data_sum <- experiment_data %>%
group_by(visit_date, condition) %>%
summarize(conversion_rate = mean(clicked_adopt_today))
ggplot(experiment_data_sum,
aes(x = visit_date,
y = conversion_rate,
color = condition,
group = condition)) +
geom_point() +
geom_line()

library(tidyverse)
library(broom)
experiment_data <- read_csv("experiment_data.csv")
glm( ~
)
library(tidyverse)
library(broom)
experiment_data <- read_csv("experiment_data.csv")
glm(clicked_adopt_today ~
)
library(tidyverse)
library(broom)
experiment_data <- read_csv("experiment_data.csv")
glm(clicked_adopt_today ~ condition,
)
library(tidyverse)
library(broom)
experiment_data <- read_csv("experiment_data.csv")
glm(clicked_adopt_today ~ condition,
family = "binomial",
)
library(tidyverse)
library(broom)
experiment_data <- read_csv("experiment_data.csv")
glm(clicked_adopt_today ~ condition,
family = "binomial",
data = experiment_data)
library(tidyverse)
library(broom)
experiment_data <- read_csv("experiment_data.csv")
glm(clicked_adopt_today ~ condition,
family = "binomial",
data = experiment_data) %>%
tidy()
term estimate std.error statistic p.value
1 (Intercept) -1.609438 0.1564922 -10.284464 8.280185e-25
2 conditiontest 1.138329 0.1971401 5.774212 7.731397e-09
Introduction to A/B Testing in R